Big Data: Human vs Material Agency

No alt text provided for this image

Lehrer, Wieneke, Vom Brocke, Jung, and Seidel (2018) studied four companies and their use of big data analytics in the business. Common to all companies in the case study was a two-layer service innovation process: first, automated customer-oriented actions based on trigger actions and preferences; and second, the combination of human and material agencies to produce customer-oriented interactions. The latter is of particular interest, as popular opinion sometimes tends to totalize big data as a replacement for human interaction. As illustrated in this study, the material agency (technology) exists to supplement the human agency.

One particular illustration is Company A, “the Swiss subsidiary of a multinational insurance firm that offers private individuals and corporate customers a broad range of personal, property, liability, and motor vehicle insurance” (Lehrer et al., 2018). Through a recent implementation of big data analytics tools and methodologies, the company has created new ways of more efficient interaction and supplemented employees’ customer service with better insights. In the latter case, the material agency guides employees’ own interactions with customers. That is, “the employees’ skill sets, experiences, and customer contact strategies [interact] with the material features of BDA to create new practices” (Lehrer et al., 2018, p. 438). This may include a number of sales- and service-oriented cues, such as social media or online shopping data points pointing to a major life event. On the other front, consider how the stream of data from various customer devices (e.g., home security system, automobile ODBC data trackers, smartphone location data) provides a wealth of data points that can be utilized by various machine learning methods to understand what typical behavior looks like for a customer and then know when anomalies show up. Personally, my home security system now knows it is an unusual occurrence for me to go outside a particular geographic region without arming the system. When that does occur, I receive an alert reminding me to arm it.

Reference

Lehrer, C., Wieneke, A., Vom Brocke, J. A. N., Jung, R., & Seidel, S. (2018). How big data analytics enables service innovation: Materiality, affordance, and the individualization of service. Journal of Management Information Systems, 35(2), 424-460. doi:10.1080/07421222.2018.1451953